Дифракция в параллельных лучах (дифракция Фраунгофера)    

      До сих пор мы рассматривали дифракцию сферических волн, изучая дифракционную картину в точке наблюдения, лежащей на конечном расстоянии от препятствия (дифракция Френеля).

      Тип дифракции, при котором дифракционная картина образуется параллельными пучками, называется дифракцией Фраунгофера. Параллельные лучи проявятся, если источник и экран находятся в бесконечности. Практически используется две линзы: в фокусе одной – источник света, а в фокусе другой – экран.

           

      Хотя принципиально дифракция Фраунгофера не отличается от дифракции Френеля, но практически именно этот случай важен, так как именно этот тип дифракции используется во многих дифракционных приборах (дифракционная решетка, например). Кроме того, здесь математический расчет проще и позволяет решать количественную задачу до конца (дифракцию Френеля мы рассматривали качественно).

Дифракция света на одной щели

      Пусть в непрерывном экране есть щель: ширина щели , длина щели (перпендикулярно плоскости листа) (рис. 9.5). На щель падают параллельные лучи света. Для облегчения расчета считаем, что в плоскости щели АВ амплитуды и фазы падающих волн одинаковы.

Рис. 9.5

      Разобьем щель на зоны Френеля так, чтобы оптическая разность хода между лучами, идущими от соседних зон, была равна .

      Если на ширине щели укладывается четное число таких зон, то в точке  (побочный фокус линзы)  будет наблюдаться минимум интенсивности, а если нечетное число зон, то максимум интенсивности:

   – условие минимума интенсивности; (9.4.1)  
   – условие максимума интенсивности (9.4.2)  

      Картина будет симметричной относительно главного фокуса точки . Знак плюс и минус соответствует углам, отсчитанным в ту или иную сторону.

      Интенсивность света . Как видно из рис. 9.5, центральный максимум по интенсивности превосходит все остальные.

      Рассмотрим влияние ширины щели.

      Т.к. условие минимума имеет вид , отсюда

  . (9.4.3)  

      Из этой формулы видно, что с увеличением ширины щели b положения минимумов сдвигаются к центру, центральный максимум становится резче.

      При уменьшении ширины щели b вся картина расширяется, расплывается, центральная полоска тоже расширяется, захватывая все большую часть экрана, а интенсивность ее уменьшается.

Дифракция света на дифракционной решетке

      Одномерная дифракционная решетка представляет собой систему из большого числа N одинаковых по ширине и параллельных друг другу щелей в экране, разделенных также одинаковыми по ширине непрозрачными промежутками (рис. 9.6).

      Дифракционная картина на решетке определяется как результат взаимной интерференции волн, идущих от всех щелей, т.е. в дифракционной решетке осуществляется многолучевая интерференция когерентных дифрагированных пучков света, идущих от всех щелей.

      Обозначим: bширина щели решетки; а – расстояние между щелями;  – постоянная дифракционной решетки.

      Линза собирает все лучи, падающие на нее под одним углом и не вносит никакой дополнительной разности хода.

Рис. 9.6 Рис. 9.7

      Пусть луч 1 падает на линзу под углом  φ (угол дифракции). Световая волна, идущая под этим углом от щели, создает в точке  максимум интенсивности. Второй луч, идущий от соседней щели под этим же углом φ, придет в ту же точку . Оба эти луча придут в фазе и будут усиливать друг друга, если оптическая разность хода будет равна mλ:

      Условие максимума для дифракционной решетки будет иметь вид:

  , (9.4.4)  

      где m = ± 1, ± 2, ± 3, … .

      Максимумы, соответствующие этому условию, называются главными максимумами. Значение величины m, соответствующее тому или иному максимуму называется порядком дифракционного максимума.

      В точке F0 всегда будет наблюдаться нулевой или центральный дифракционный максимум.

      Так как свет, падающий на экран, проходит только через щели в дифракционной решетке, то условие минимума для щели и будет условием главного дифракционного минимума для решетки:

  . (9.4.5)  

      Конечно, при большом числе щелей, в точки экрана, соответствующие главным дифракционным минимумам, от некоторых щелей свет будет попадать и там будут образовываться побочные дифракционные максимумы и минимумы (рис. 9.7). Но их интенсивность, по сравнению с главными максимумами, мала (≈ 1/22).

      При условии   ,

      волны, посылаемые каждой щелью, будут гаситься в результате интерференции и появятся дополнительные минимумы.

      Количество щелей определяет световой поток через решетку. Чем их больше, тем большая энергия переносится волной через нее. Кроме того, чем больше число щелей, тем больше дополнительных минимумов помещается между соседними максимумами. Следовательно, максимумы будут более узкими и более интенсивными (рис. 9.8).

Рис. 9.8

      Из (9.4.3) видно, что угол дифракции пропорционален длине волны λ. Значит, дифракционная решетка разлагает белый свет на составляющие, причем отклоняет свет с большей длиной волны (красный) на больший угол (в отличие от призмы, где все происходит наоборот).

      Это свойство дифракционных решеток используется для определения спектрального состава света (дифракционные спектрографы, спектроскопы, спектрометры).