Излучение Вавилова–Черенкова    

      В 1934 году П.А.Черенков, работавший тогда под руководством С.Н. Вавилова, изучая действие электромагнитного излучения на вещество, обнаружил особый вид свечения жидкости под действием γ-лучей радия. Подобное излучение света было обнаружено и под действием других заряженных частиц, например электронов.

       Характерные особенности этого излучения:

      во-первых, свечение имело голубоватый цвет и наблюдалось у всех чистых прозрачных жидкостей, причем яркость и цвет свечения мало зависели от химического состава жидкости;

      во-вторых, в отличие от люминесценции, не наблюдалось ни температурного, ни примесного ослабления свечения;

      в-третьих, излучение имеет поляризацию и направленность вдоль направления движения частицы.

       Вавилов предположил, что обнаруженное явление не является люминесценцией, свет излучают быстрые электроны, движущиеся в жидкости. В 1937 году     И.Е. Тамм и И.М. Франк объяснили механизм свечения и создали количественную теорию, основанную на уравнениях классической электродинамики. В 1940 году В.Л. Гинзбург создал квантовую теорию, которая привела к тем же результатам.

      Излучение Вавилова–Черенкова – это излучение электрически заряженной частицы, движущейся в среде, со скоростью  превышающей скорость света в этой среде :

.

      Согласно электромагнитной теории, заряд, движущийся равномерно не излучает электромагнитной волны. Однако Тамм и Франк показали, что это справедливо лишь для скоростей частиц, не превышающих фазовую скорость волны в данной среде. В процессе излучения Вавилова–Черенкова энергия и скорость излучающей свободной частицы уменьшается, то есть частица тормозится.

      Заряженная частица вызывает кратковременную поляризацию вещества в окрестности тех точек, через которые она проходит при своем движении. Поэтому молекулы среды, лежащие на пути частицы, становятся кратковременно действующими когерентными источниками элементарных электромагнитных волн, которые интерферируют друг с другом.

      При движении заряженной частицы в изотропной среде со скоростью  элементарные волны будут представлять собой сферы, распространяющиеся со скоростью  (рис. 10.10).

Рис. 10.10

Рис. 10.11

      Согласно принципу Гюйгенса–Френеля, в результате интерференции элементарные волны гасят друг друга всюду, за исключением их общей огибающей. А при движении частицы со скоростью  общей огибающей волн нет: все окружности лежат одна в другой. Поэтому заряд, движущийся равномерно прямолинейно со скоростью , свет не излучает.

      Если частица движется быстрее, чем распространяются волны в среде ( ), то соответствующие элементарным волнам сферы пересекаются и их общая огибающая (волновая поверхность) представляет собой конус с вершиной в точке, совпадающей с мгновенным положением движущейся частицы (рис.10.11). В данном случае, в результате интерференции элементарные волны усиливают друг друга. Нормали к образующим конуса определяют волновые векторы, т.е. направления распространения света. Угол , который составляет волновой вектор с направлением движения частицы, удовлетворяет соотношению: .

      В этих направлениях вторичные волны будут усиливаться и формировать излучение Вавилова–Черенкова. Свет, возникающий на каждом малом участке траектории частицы, распространяется вдоль образующей конуса, ось которого совпадает с направлением движения свободного электрона , а угол при вершине равен 2  (рис. 10.12).

Рис. 10.12

      В жидкостях и твердых телах условие  начинает выполняться для электронов при энергиях , а для протонов при .

      Описанный эффект используют в счетчиках Черенкова, предназначенных для регистрации заряженных микрочастиц (электронов, протонов, мезонов и т.п.). В них световая вспышка, возникающая при движении частицы, преобразуется в электрический сигнал с помощью фотоумножителя, который и регистрируется. В некоторых черенковских счетчиках можно определить угол , по условию , оценить скорость частицы и, зная массу, определить ее энергию (что было использовано Э. Сегре при открытии антипротона в 1955г.).