Давление. Основное уравнение молекулярно-кинетической теории    

       Рассмотрим подробнее, что представляет собой один из основных параметров состояния – давление P. Ещё в XVIII веке Даниил Бернулли предположил, что давление газа есть следствие столкновения газовых молекул со стенками сосуда. Именно давление чаще всего является единственным сигналом присутствия газа.

       Итак, находящиеся под давлением газ или жидкость действуют с некоторой силой на любую поверхность, ограничивающую их объем. В этом случае сила действует по нормали к ограничивающей объем поверхности. Давление на поверхность равно:

  ,    
где ΔF – сила, действующая на поверхность площадью ΔS.

       Можно также говорить о давлении внутри газа или жидкости. Его можно измерить, помещая в газ или жидкость небольшой куб с тонкими стенками, наполненный той же средой (рис. 1.1).

          
Рис. 1.1
       Поскольку среда покоится, на каждую грань куба со стороны среды действует одна и та же сила ΔF. В окрестности куба давление равно ΔFS, где ΔS – площадь грани куба. Из этого следует, что внутреннее давление является одним и тем же во всех направлениях и во всем объеме независимо от формы сосуда. Этот результат называется законом Паскаля: если к некоторой части поверхности, ограничивающей газ или жидкость, приложено давление P0, то оно одинаково передается любой части этой поверхности.

       Допустим, автомобиль поднимается гидравлическим домкратом, состоящим, как показано на рисунке 1.2, из двух соединенных трубкой цилиндров с поршнями. Диаметр большого цилиндра равен 1 м, а диаметр малого – 10 см. Автомобиль имеет вес F2. Найдем силу давления на поршень малого цилиндра, необходимую для подъема автомобиля.


Рис. 1.2
       Поскольку оба поршня являются стенками одного и того же сосуда, то в соответствии с законом Паскаля они испытывают одинаковое давление. Пусть – давление на малый поршень, а – давление на большой поршень. Тогда, т.к. P1 = P2, имеем:
  ,    

       Отсюда F1=F2(S1/S2)=0,01F2

       Таким образом, для подъема автомобиля достаточно давить на малый поршень с силой, составляющей лишь 1 % веса автомобиля.

       Вычислим давление, оказываемое газом на одну из стенок сосуда (рис. 1.3).


Рис. 1.3
       Обозначим: n – концентрация молекул в сосуде; m0 – масса одной молекулы. Движение молекул по всем осям равновероятно, поэтому к одной из стенок сосуда площадью S, подлетает в единицу времени (1/6)nvx молекул, где vx – проекция вектора скорости на направление, перпендикулярное стенке.

       Каждая молекула обладает импульсом m0υx, но стенка получает импульс 2m0υx(при абсолютно-упругом ударе m0υx- (-m0υx)=2m0υx). За время dt о стенку площадью S успеет удариться число молекул, которое заключено в объёме V:

  ,    
       Общий импульс, который получит стенка S:
  ,    
       Разделив обе части равенства на S и dt, получим выражение для давления:
  ,   (1.2.1)
       Таким образом, мы определили давление как силу, действующую в единицу времени на единицу площади:
  ,   (1.2.2)
       Наивно полагать, что все молекулы подлетают к стенке S с одной и той же скоростью vx (рис. 1.3). На самом деле молекулы имеют разные скорости, направленные в разные стороны, то есть скорости газовых молекул – случайные величины.

       Более точно случайную величину характеризует среднеквадратичная величина. Поэтому под скоростью vx2понимаем среднеквадратичную скорость <vx2> . Вектор скорости, направленный произвольно в пространстве, можно разделить на три составляющих:

  ,    
       Ни одной из этих проекций нельзя отдать предпочтение из-за хаотичного теплового движения молекул, то есть в среднем . Следовательно, на другие стенки будет точно такое же давление. Тогда можно записать в общем случае:
     
или
    (1.2.3)
где <Ek>– средняя энергия одной молекулы. Это и есть основное уравнение молекулярно-кинетической теории газов.

       Итак, давление газов определяется средней кинетической энергией поступательного движения молекул.

       Уравнение (1.2.3) называют основным уравнением, потому что давление Р – макроскопический параметр системы здесь связан с основными характеристиками – массой и скоростью молекул.

       Иногда за основное уравнение принимают выражение

       Рассмотрим единицы измерения давления.

       По определению, , поэтому размерность давления Н/м2.

       1 Н/м2 = 1 Па; 1 атм. = 9,8 Н/см2 = 98066 Па ≈105 Па,

       1 мм рт.ст. = 1 тор = 1/760 атм. = 133,3 Па,

       1 бар = 105 Па; 1 атм. = 0,98 бар.