Кинетическая энергия вращающегося тела    

       Кинетическая энергия – величина аддитивная. Поэтому кинетическая энергия тела, движущегося произвольным образом, равна сумме кинетических энергий всех n материальных точек, на которые это тело можно мысленно разбить:
,  (6.4.1)  
       Если тело вращается вокруг неподвижной оси z с угловой скоростью , то линейная скорость i-й точки , Ri – расстояние до оси вращения. Следовательно,
  ,  (6.4.2)  
       Сопоставив (6.4.1) и (6.4.2), можно увидеть, что момент инерции тела I является мерой инертности при вращательном движении, так же как масса m – мера инерции при поступательном движении.
       В общем случае движение твердого тела можно представить в виде суммы двух движений – поступательного со скоростью  vc  и вращательного с угловой скоростью ω вокруг мгновенной оси, проходящей через центр инерции. Тогда полная кинетическая энергия этого тела
  ,         (6.4.3)  
       Здесь Ic – момент инерции относительно мгновенной оси вращения, проходящей через центр инерции.