Магнитное поле соленоида    

      Применим теорему о циркуляции вектора  для вычисления простейшего магнитного поля – бесконечно длинного соленоида, представляющего собой тонкий провод, намотанный плотно виток к витку на цилиндрический каркас (рис. 2.11).

Рис. 2.11

      Соленоид можно представить в виде системы одинаковых круговых токов с общей прямой осью.

      Бесконечно длинный соленоид симметричен любой, перпендикулярной к его оси плоскости. Взятые попарно (рис. 2.12), симметричные относительно такой плоскости витки создают поле, в котором вектор  перпендикулярен плоскости витка, т.е. линии магнитной индукции имеют направление параллельное оси соленоида внутри и вне его.

Рис. 2.12

      Из параллельности вектора  оси соленоида вытекает, что поле как внутри, так и вне соленоида должно быть однородным.

      Возьмём воображаемый прямоугольный контур 1–2–3–4–1 и разместим его в соленоиде, как показано на рисунке 2.13.

  

Рис. 2.13

      Второй и четвёртый интегралы равны нулю, т.к. вектор  перпендикулярен направлению обхода, т.е .

      Возьмём участок 3–4 – на большом расстоянии от соленоида, где поле стремится к нулю; и пренебрежём третьим интегралом, тогда

где  – магнитная индукция на участке  1–2 – внутри  соленоида,   – магнитная проницаемость вещества.

      Если отрезок 1–2 внутри соленоида, контур охватывает ток:

где n – число витков на единицу длины, I – ток в соленоиде (в проводнике).

      Тогда магнитная индукция внутри соленоида:

  ,  (2.7.1)  

      Вне соленоида:

 и , т.е. .

Бесконечно длинный соленоид аналогичен плоскому конденсатору – и тут, и там поле однородно и сосредоточено внутри.

      Произведение nI – называется число ампер витков на метр.

      У конца полубесконечного соленоида, на его оси магнитная индукция равна:

  ,  (2.7.2)  

      Практически, если длина соленоида много больше, чем его диаметр, формула (2.7.1) справедлива для точек вблизи середины, формула (2.7.2) для точек около конца.

      Если же катушка короткая, что обычно и бывает на практике, то магнитная индукция в любой точке А, лежащей на оси соленоида, направлена вдоль оси (по правилу буравчика) и численно равна алгебраической сумме индукций магнитных полей создаваемых в точке А всеми витками. В этом случае имеем:

·     В точке, лежащей на середине оси соленоида магнитное поле будет максимальным:

  ,  (2.7.3)  

где L – длина соленоида, R – радиус витков.

·     В произвольной точке конечного соленоида (рис. 2.14) магнитную индукцию можно найти по формуле

  ,  (2.7.4)  

Рис. 2.14

      На рисунке 2.15 изображены силовые линии магнитного поля   :  а) металлического стержня; б) соленоида; в) железные опилки, рассыпанные на листе бумаги, помещенной над магнитом, стремятся вытянуться вдоль силовых линий; г) магнитные полюсы соленоида.

          

Рис. 2.15